Abstract

Through a double-layer potential argument the inner and outer Poisson kernels, the Cauchy-type conjugate inner and outer Poisson kernels, and the kernels of the Cauchy-type inner and outer Hilbert transformations on the sphere are deduced. We also obtain Abel sum expansions of the kernels and prove the Lp-boundedness of the inner and outer Hilbert transformations for 1<p<∞.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.