Abstract
The Dirac equation is most easily formulated in terms of functions from space-time to the Clifford algebra R 3,1 and the gradient operator. In this setting we may construct wave packet solutions for all leptons by introducing a single operator which transforms a real valued function on the group Spin +(3,1) to a wave function by using integration on the group itself. Applying the operator to a certain space of real valued functions on the group, we produce Spin +(3,1)-invariant solution spaces which may then be classified. The results are one space each for electrons and positrons and two parameter families of spaces for neutrinos and antineutrinos. The electron and neutrino spaces display an asymptotic symmetry at high energies, as do the positron and antineutrino spaces. If we also insist that the solution spaces be translation invariant, then we get the familiar two-component neutrino theory and the asymptotic symmetry between leptons of the same handedness used in the theory of weak interactions. This symmetry is purely a result of the Dirac theory in the Clifford algebra setting.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.