Abstract

In answer to open questions (posed in [ 12 ]) we prove that an effect algebra has a Hilbert space effect-representation iff E possesses an ordering set of states. These are, up to isomorphism, all intervals and all their sub-effect algebras in the set of all positive linear operators on any Hilbert space H . Nevertheless, there are effect algebras E , elements of which are linear operators in a Hilbert space, but E does not have such a representation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.