Abstract

We show that the set of all positive linear operators densely defined in an infinite-dimensional complex Hilbert space can be equipped with partial sum of operators making it a generalized effect algebra. This sum coincides with the usual sum of two operators whenever it exists. Moreover, blocks of this generalized effect algebra are proper sub-generalized effect algebras. All intervals in this generalized effect algebra become effect algebras which are Archimedean, convex, interval effect algebras, for which the set of vector states is order determining. Further, these interval operator effect algebras possess faithful states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.