Abstract

RuII complexes based on functionalized 2,6-di(quinolin-8-yl)pyridine (dqp) ligands feature excellent photophysical and geometrical properties, thus suggesting dqp ligands as ideal surrogates for 2,2'-bipyridine (bpy) or 2,2':6',2″-terpyridine (tpy). However, the synthesis of multifunctionalized [Ru(dqp)2]2+-based complexes is often low-yielding, which has hampered their practical value to date. In this study, a universal high-yielding route was explored and corroborated by a mechanistic investigation based on 1H NMR, MS, and density functional theory. With application of high-boiling but less-coordinating solvents (i.e., DMF) during the coordination of dqp by the precursor [Ru(dqp)(MeCN)3]2+, the required reaction temperature is lowered considerably (by 30 °C). In comparison to tpy, the reaction rate for dqp is further reduced which is assigned to the higher steric demand upon the coordination process. Namely, the onset of coordination of a tpy derivative at 60 °C and of dqp at 90 °C is significantly milder than in previous protocols. The versatility of the procedure is demonstrated by the high-yielding syntheses of multifunctionalized RuII complexes reaching up to 90%, whereby the presence of hydroxyl groups and losses during purification may lower the isolated yields substantially. In addition, the same strategy of high-boiling but less-coordinating solvents enabled a milder one-pot protocol to prepare [Ru(dqp)2]2+ from a [Ru(MeCN)6]2+ source, i.e., without the need for in situ reduction or halide abstraction as typical for RuIIICl3 hydrate. Hence, the developed protocol benefits from an improved thermal tolerance of sensitive functional groups, which may be applicable also to related polypyridyl-type ligands.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call