Abstract

This paper presents an interleaved boost converter with a bifold Dickson voltage multiplier suitable for interfacing low-voltage renewable energy sources to high-voltage distribution buses and other applications that require a high-voltage-gain conversion ratio. The proposed converter was constructed from two stages: an interleaved boost stage, which contains two inductors operated by two low-side active switches, and a voltage multiplier cell (VMC) stage, which mainly consists of diodes and capacitors to increase the overall voltage gain. The proposed converter offers a high-voltage-gain ratio with low voltage stress on the semiconductor switches as well as the passive components. This allows the selection of efficient and compact components. Moreover, the required inductance that ensures operation in the continuous conduction mode (CCM) is lower than the one in the conventional interleaved boost converter. The distinction of the proposed converter is that the inductors’ currents are equal, regardless of the number of VMCs. Equal sharing of interleaved boost-stage currents reduces the conduction loss in the active switches as well as the inductors and thus improves the overall efficiency, as the conduction power loss is a quadratic function. In this paper, the theory of operation and steady-state analysis of the proposed converter are illustrated and verified by simulation results. A $\text{200-W}$ hardware prototype was implemented to convert a $\text{20-V}$ input source to a $\text{400-V}$ dc load and validate both the theory and the simulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call