Abstract

The nuclear factor κB (NF-κB) pathway is critical for regulating immune and inflammatory responses, and uncontrolled NF-κB activation is closely associated with various inflammatory diseases and malignant tumors. The Met1-linked linear ubiquitin chain, which is generated by linear ubiquitin chain assembly complex (LUBAC), is important for regulating NF-κB activation. This process occurs through the linear ubiquitination of NF-κB essential modulator, a regulatory subunit of the canonical inhibitor of the NF-κB kinase complex. In this study, we have established a robust and efficient high-throughput screening (HTS) platform to explore LUBAC inhibitors, which may be used as tool compounds to elucidate the pathophysiological role of LUBAC. The HTS platform consisted of both cell-free and cell-based assays: (1) cell-free LUBAC-mediated linear ubiquitination assay using homogenous time-resolved fluorescence technology and (2) cell-based LUBAC assay using the NF-κB luciferase reporter gene assay. By using the HTS platform, we performed a high-throughput chemical library screen and identified several hit compounds with selectivity against a counterassay. Liquid chromatography–mass spectrometry analysis revealed that these compounds contain a chemically reactive lactone structure, which is transformed to give reactive α,β-unsaturated carbonyl compounds. Further investigation revealed that the reactive group of these compounds is essential for the inhibition of LUBAC activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.