Abstract
Recent advances in machine learning and the expanding availability of materials data have enabled significant developments in materials science. In this study, novel configurations of high-entropy ceramic (HEC) materials were explored by predicting their coefficient of thermal expansion (CTE) using machine learning (ML) and high-throughput screening. A machine learning model was built using 3360 datasets containing the thermodynamic, elastic, and thermophysical properties of HEC with carbide configurations of (Ti0.2Ta0.2X0.2Y0.2Z0.2)C. The high correlation of the bulk and Young's moduli, and cohesive energy features with the CTE facilitated its prediction. The random forest (RF) and neural network (NET)-based models successfully reproduced the CTE reported in existing experimental and theoretical studies. Overall, first-principles calculation was implemented to configure a database for HEC and a new ML application method is proposed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have