Abstract

One goal of the structural genomics initiative is the identification of new protein folds. Sequence-based structural homology prediction methods are an important means for prioritizing unknown proteins for structure determination. However, an important challenge remains: two highly dissimilar sequences can have similar folds & how can we detect this rapidly, in the context of structural genomics? High-throughput NMR experiments, coupled with novel algorithms for data analysis, can address this challenge. We report an automated procedure, called HD, for detecting 3D structural homologies from sparse, unassigned protein NMR data. Our method identifies 3D models in a protein structural database whose geometries best fit the unassigned experimental NMR data. HD does not use, and is thus not limited by sequence homology. The method can also be used to confirm or refute structural predictions made by other techniques such as protein threading or homology modelling. The algorithm runs in O(pn + pn(5/2) log (cn)+p log p) time, where p is the number of proteins in the database, n is the number of residues in the target protein and c is the maximum edge weight in an integer-weighted bipartite graph. Our experiments on real NMR data from 3 different proteins against a database of 4,500 representative folds demonstrate that the method identifies closely related protein folds, including sub-domains of larger proteins, with as little as 10-30% sequence homology between the target protein (or sub-domain) and the computed model. In particular, we report no false-negatives or false-positives despite significant percentages of missing experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.