Abstract

Low temperature sensitivity and low spectral contrast are serious but common issues for most Fabry Perot (FP) sensors with an air cavity. In this paper, a high-temperature-sensitive and spectrum-contrast-enhanced Fabry Perot interferometer (FPI) is proposed and experimentally demonstrated. The device is composed of a hollow cylindrical waveguide (HCW) filled with polydimethylsiloxane (PDMS) and a semi-elliptic PDMS end face. The semi-elliptic PDMS end face increases the spectral contrast significantly due to the focusing effect. Experimentally, the spectral contrast is 11.97 dB, which is two times higher than the sensor without semi-elliptic PDMS end face. Ultra-high temperature sensitivity of 3.1501 nm/°C was demonstrated. The proposed sensor exhibits excellent structural stability, high spectral contrast and high temperature sensitivity, showing great potential in biomedicine, industrial manufacturing, agricultural production and other applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.