Abstract

In this paper, an optic-fiber temperature sensor is proposed with an innovative structure design and sensing theory combination. The structure design is consisted of classic SMSMS structure and a polydimethylsiloxane (PDMS) microcavity, which is formed by inserting single mode fibers (SMF) and multimode fibers (MMF) from both ends of a hollow core fiber (HCF) filled with uncured PDMS. By adjusting the length (L) of the cavity into proper value, the reflection temperature sensitivity reaches up to −567.86 pm/℃, and the transmission sensitivity reaches −120.69 pm/℃. Due to the presence of the PDMS microcavity, the reflection spectrum achieved highly sensitive temperature Fabry-Perot interferometer (FPI) sensor. Moreover, a Mach-Zehnder interferometer (MZI) temperature sensor also formed by monitoring the transmission spectrum, and its temperature sensitivity is elevated about 7 and 1.2 times compared with the pure splicing SMSMS and the splicing + PDMS coating structure. By deploying the PDMS microcavity, FPI sensor and MZI sensor were combined inside one device with significant temperature sensing performance, and these two combined sensors can cross-correct within the intersected detection range. With simple manufacture steps, higher temperature sensitivity and bigger sensing range are achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.