Abstract

Chemical composition gratings (CCGs), unlike standard fiber Bragg gratings (FBGs), do not suffer a significant decrease in reflectance or an irreversible wavelength shift when they are exposed to elevated temperatures. To date, the growth of CCGs has been related to the fluorine content of the fibers in which they are written. It is shown that FBGs with high thermal stability, resembling CCGs, can be fabricated in Er3+-doped optical fibers that do not contain any fluorine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.