Abstract
Fiber Bragg gratings are all-fiber wavelength-selective refractive index structures manufactured through UV exposure of optical fibers. Their applications range from WDM all-fiber filters, dispersion compensators and fiber laser resonators for optical telecommunication applications to different types of point or distributed optical fiber sensors for a large variety of applications. The nuclear industry is considering the use of photonic technology for data communication in the next generation of nuclear power plants. In addition, fiber Bragg grating sensors are being evaluated by the nuclear industry for structural integrity and temperature monitoring. This work aims to study, in harsh radiation environments, a new type of FBG referred to as chemical composition grating. These gratings differ from other types of FBG in that their refractive index structure is attributed to a change in the chemical composition. Chemical composition gratings have shown to be extremely temperature stable surviving temperatures in excess of 1000/spl deg/C. We have experimentally studied the effect of very harsh gamma-neutron radiation on the properties of chemical composition gratings fabricated in a Ge-F doped silica optical fiber.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.