Abstract

In this paper, we present the realization of high-temperature operation of SiC power semiconductor devices by low-temperature sintering of nanoscale silver paste as a novel die-attachment solution. The silver paste was prepared by mixing nanoscale silver particles with carefully selected organic components which can burn out within the low-temperature firing range. SiC Schottky diodes were placed onto stencil-printed layers of the nanoscale silver paste on Au or Ag metallized direct bonded copper (DBC) substrates for the die-attachment. After heating up to 300degC and dwell for 40 min in air to burn out the organic components in the paste and to sinter the nanoscale silver, the paste consolidated into a strong and uniform die-attach bonding layer with purity >99% and density >80%. Then the die-attached SiC devices were cooled down to room temperature and their top terminals were wire-bonded to achieve the high-temperature power packages. Then the power packages were heated up from room temperature to 300degC for high-temperature operation and characterization. Results of the measurement demonstrate the low-temperature silver sintering as an effective die-attach method for high-temperature electronic packaging. An advanced packaging structure for future SiC transistors with several potential advantages was also proposed based on the low-temperature sintering technology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.