Abstract

The performance of conventional photodiodes is limited by an intrinsic tradeoff between quantum efficiency and bandwidth. We have successfully demonstrated that resonant-cavity photodiodes can simultaneously achieve high quantum efficiency and wide bandwidth. The resonant-cavity approach lengthens the effective absorption thickness through multiple reflections between two parallel mirrors. Previously, it has been shown that resonant-cavity, separate-absorption-and-multiplication (SAM) avalanche photodiodes (APDs) exhibit high peak external quantum efficiency (approximately 75%), low dark current and low bias voltage (less than 15 volts). In this paper, we describe the frequency response of resonant-cavity AlGaAs/GaAs/InGaAs SAM APDs. A unity-gain bandwidth of 23 GHz and a high gain-bandwidth product of 130 GHz have been achieved. Also, low multiplication noise characteristics (0.2 less than k less than 0.3) are reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.