Abstract

Abstract This paper proposed a new method of high-speed electrical discharge machining (EDM) using rotating short arcs under composite field. By the Lorentz force, the electric force and the high-speed rotation of the tool electrode, rotating short arcs are generated between the tool electrode and the workpiece, which can greatly improve the material removal rate of difficult-to-cut materials such as titanium alloys and superalloys. Firstly, the machining equipment used to generate rotating short arcs was constructed. Secondly, single arc discharge experiment was carried out to investigate the motion characteristics of rotating short arcs. The result shows that the arcs can rotate between the tool electrode and workpiece under composite field. Then, the experiment of processing GH4169 was conducted to explore the machining characteristics of rotating short arcs milling, which indicated that rotating short arcs can achieve a much higher material removal rate (MRR). Additionally, it’s found that the magnetic field also has influence on debris, which is beneficial to debris removal. Finally, a comparative experiment was carried out. The MRR of rotating short arcs milling was three times than that of traditional EDM, and the tool electrode wear rate (TEWR) is only one-fifth of that of traditional EDM. The comparative experiment further verified that rotating short arcs milling can achieve higher MRR and lower TEWR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call