Abstract
We have investigated and tried to improve the packaging technologies for a bit-error-rate (BER) measurement system for high-T/sub c/ superconducting circuits. Signal cables, test fixture, and magnetic shields were specially designed and assembled for the BER measurement system, taking into account electrical losses, signal reflection, heat inflow, and power consumption of a cryocooler. BER was further improved by changing the way of connection between the semiconductor amplifiers outside the sample vacuum chamber. These improvements led to a BER less than 10/sup -12/ at an output voltage (V/sub out/) of 1.7 and 2.3 mV for a 50-/spl Omega/ standard microstrip transmission line and a superconducting microstrip-line to coplanar-waveguide transmission-line converter, respectively. The temperature rise of the test fixture was as low as about 2 K. These values are approximately one order of magnitude smaller than those in the previous measurement system and small enough to be achieved by using superconducting interface circuits. Furthermore, 1-Gb/s operation of a superconducting quantum interference device array-type interface circuit was demonstrated in the BER measurement system at 40 K.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have