Abstract

This paper presents a new optical measurement method employing a HSI (hue, saturation and intensity) colour model to form trapezoidal structured patterns for morphology reconstruction of a measured object at high speed. Profilometry on objects having non-monochromatic surfaces is considered as one of the remaining challenges most faced by the currently existing structured-light projection methods since the surface reflectivity to red, green and blue light may vary significantly. To address this, an innovative colour calibration method for a hue component is developed to determine the accurate reflectivity response of the measured surface. The trapezoidal colour pattern is calibrated to compensate the hue-shifted quantity induced by the reflective characteristics of the object's surface. The developed method can reconstruct precise 3D surface models from objects by acquiring a single-shot image, which can achieve high-speed profilometry and avoid in situ potential measurement disturbances such as environmental vibration. To verify the feasibility of the developed methodology, some experiments were conducted to confirm that the measurement accuracy can be controlled within 2.5% of the overall measurement range and the repeatability of 3.0% within ±3σ can be achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.