Abstract

We present the design, fabrication and discuss the performance of a new combined high-resolution Scanning Tunneling and Thermopower Microscope (STM/SThEM). We also describe the development of the electronic control, the user interface, the vacuum system, and arrangements to reduce acoustical noise and vibrations. We demonstrate the microscope’s performance with atomic-resolution topographic images of highly oriented pyrolytic graphite (HOPG) and local thermopower measurements in the semimetal Bi2Te3. Our system offers a tool to investigate the relationship between electronic structure and thermoelectric properties at the nanoscale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.