Abstract

Due to environmental factors, mechanical vibration, alignment error and other factors, the micro-displacement of four collected images deviates from the standard 2×2 micro-scanning images in our optical micro-scanning thermal microscope imaging system. This influences the quality of the reconstructed image and the spatial resolution of the imaging system cannot be improved. To solve this problem and reduce the optical micro-scanning errors, we propose an image reconstruction method based on the principle of the Second-order Taylor series expansion. The algorithm can obtain standard 2×2 microsanning under-sampling images from four non-standard 2×2 microsanning under-sampling images and then can obtain high spatial oversample resolution image. Simulations and experiments show that the proposed technique can reduce the optical micro-scanning errors and improve the systems spatial resolution. The algorithm has low computational complexity, and it is simple and fast. Furthermore this technique can be applied to other electro-optical imaging systems to improve their resolutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.