Abstract
Molecular imaging has long been recognized as an important tool for diagnosis, characterization, and monitoring of treatment responses of brain tumors. Magnetic resonance spectroscopic imaging (MRSI) is a label-free molecular imaging technique capable of mapping metabolite distributions non-invasively. Several metabolites detectable by MRSI, including Choline, Lactate and N-Acetyl Aspartate, have been proved useful biomarkers for brain tumor characterization. However, clinical application of MRSI has been limited by poor resolution, small spatial coverage, low signal-to-noise ratio and long scan time. This work presents a novel MRSI method for fast, high-resolution metabolic imaging of brain tumor. This method synergistically integrates fast acquisition sequence, sparse sampling, subspace modeling and machine learning to enable 3D mapping of brain metabolites with a spatial resolution of 2.0×3.0×3.0 mm3 in a 7-minute scan. Experimental results obtained from patients with diagnosed brain tumor showed great promise for capturing small-size tumors and revealing intra-tumor metabolic heterogeneities.Clinical Relevance - This paper presents a novel technique for label-free molecular imaging of brain tumor. With further development, this technology may enable many potential clinical applications, from tumor detection, characterization, to assessment of treatment efficacy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.