Abstract

With the development of information technology and the increasing demand for data processing, the serial mode of the central processing unit (CPU) is difficult to efficiently transmit large-scale spatiotemporal data, and the processing effect for high-resolution images is not good. This paper designed a high-resolution image processing and spatiotemporal data transmission system based on graphics processing unit (GPU) acceleration to improve the processing efficiency of large-scale spatiotemporal data. In this paper, traffic spatiotemporal data was taken as an example for analysis. Large-scale traffic image data was collected by road monitoring equipment, and image compression was performed on the collected image. Fourier transform was used to eliminate image data redundancy, and GPU-accelerated parallel processing was used to achieve fast image defogging and data transmission. This paper selected 2TB of traffic spatiotemporal data with image resolutions of 540P, 720P, 1080P, 1440P, and 2160P. GPU acceleration was performed using the Compute Unified Device Architecture (CUDA). In images with a resolution of 2160P, the processing time for CPU and GPU acceleration was 2900ms and 28ms, respectively, with an acceleration ratio of 103.6. A high-resolution image processing and spatiotemporal data transmission system based on GPU acceleration can improve the efficiency of traffic spatiotemporal data processing and have excellent concurrent processing capabilities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.