Abstract

Abstract. Oil seed crops, especially oil palm, are among the most rapidly expanding agricultural land uses, and their expansion is known to cause significant environmental damage. Accordingly, these crops often feature in public and policy debates which are hampered or biased by a lack of accurate information on environmental impacts. In particular, the lack of accurate global crop maps remains a concern. Recent advances in deep-learning and remotely sensed data access make it possible to address this gap. We present a map of closed-canopy oil palm (Elaeis guineensis) plantations by typology (industrial versus smallholder plantations) at the global scale and with unprecedented detail (10 m resolution) for the year 2019. The DeepLabv3+ model, a convolutional neural network (CNN) for semantic segmentation, was trained to classify Sentinel-1 and Sentinel-2 images onto an oil palm land cover map. The characteristic backscatter response of closed-canopy oil palm stands in Sentinel-1 and the ability of CNN to learn spatial patterns, such as the harvest road networks, allowed the distinction between industrial and smallholder plantations globally (overall accuracy =98.52±0.20 %), outperforming the accuracy of existing regional oil palm datasets that used conventional machine-learning algorithms. The user's accuracy, reflecting commission error, in industrial and smallholders was 88.22 ± 2.73 % and 76.56 ± 4.53 %, and the producer's accuracy, reflecting omission error, was 75.78 ± 3.55 % and 86.92 ± 5.12 %, respectively. The global oil palm layer reveals that closed-canopy oil palm plantations are found in 49 countries, covering a mapped area of 19.60 Mha; the area estimate was 21.00 ± 0.42 Mha (72.7 % industrial and 27.3 % smallholder plantations). Southeast Asia ranks as the main producing region with an oil palm area estimate of 18.69 ± 0.33 Mha or 89 % of global closed-canopy plantations. Our analysis confirms significant regional variation in the ratio of industrial versus smallholder growers, but it also confirms that, from a typical land development perspective, large areas of legally defined smallholder oil palm resemble industrial-scale plantings. Since our study identified only closed-canopy oil palm stands, our area estimate was lower than the harvested area reported by the Food and Agriculture Organization (FAO), particularly in West Africa, due to the omission of young and sparse oil palm stands, oil palm in nonhomogeneous settings, and semi-wild oil palm plantations. An accurate global map of planted oil palm can help to shape the ongoing debate about the environmental impacts of oil seed crop expansion, especially if other crops can be mapped to the same level of accuracy. As our model can be regularly rerun as new images become available, it can be used to monitor the expansion of the crop in monocultural settings. The global oil palm layer for the second half of 2019 at a spatial resolution of 10 m can be found at https://doi.org/10.5281/zenodo.4473715 (Descals et al., 2021).

Highlights

  • Crops that produce vegetable oils, such as soy, rapeseed, oil palm, and sunflower, take up ca. 6 % of all agricultural land and ca. 2.3 % of the total global land area and are among the world’s most rapidly expanding crop types (OECD, 2018)

  • The estimated oil palm area varies greatly among countries, with Indonesia and Malaysia representing the bulk of the total surface area, while most other countries have a plantation area below 2 Mha (Fig. 6)

  • Our convolutional neural network (CNN) model applied to Sentinel-1 and Sentinel-2 classified closed-canopy oil palm stands with higher detail (10 m spatial resolution) than existing datasets, at a coarser resolution (100 m spatial resolution), the temporal analysis used in Xu et al (2020) aimed to detect disturbances that may or may not result in the development of oil palm plantations

Read more

Summary

Introduction

Crops that produce vegetable oils, such as soy, rapeseed, oil palm, and sunflower, take up ca. 6 % of all agricultural land and ca. 2.3 % of the total global land area and are among the world’s most rapidly expanding crop types (OECD, 2018). Demand for vegetable oils is increasing with one estimate foreseeing an increase from 205 Mt in 2019 (OECD, 2018) to 310 Mt in 2050 (Byerlee et al, 2017). This has created a need to optimize land use for vegetable oil production in order to minimize environmental impacts and maximize socioeconomic benefits. One of the requirements for this is accurate global maps for all oil-producing crops. One of the most extensively mapped crops is oil palm (Elaeis guineensis) because of societal concerns about the associated environmental impacts on tropical forests and social disruption. Only the global extent of industrial plantations is reasonably well known, while the more heterogeneous plantings at smallholder scales remain largely unmapped (Meijaard et al, 2018)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call