Abstract
Multiferroic tunnel junctions have been considered as potential candidates for nonvolatile memory devices. Understanding the atomic structure at the interface is crucial for optimizing the performances in such oxide electronics. Spatially resolved electron energy loss spectroscopy (EELS) combined with aberration-corrected scanning transmission electron microscopy is employed to measure the compositional profiles across the interfaces of different layers with atomic resolution. Two-dimensional elemental imaging with atomic resolution is demonstrated, and the influences of the interface sharpness, the terminal layer, and cation intermixing are investigated. An asymmetric sublattice intermixing at the Pr0.8Ca0.2MnO3/BaTiO3/La0.7Sr0.3MnO3 interface is observed, which can affect the local Mn valence and coupling. The reduction in the Mn valence at the interface is further studied using EELS near-edge fine structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.