Abstract
We construct full-diversity, arbitrary rate STBCs for specific number of transmit antennas over an apriori specified signal set using twisted Laurent series rings. Constructing full-diversity space-time block codes from algebraic constructions like division algebras has been done by Shashidhar et al. Constructing STBCs from crossed product algebras arises this question in mind that besides these constructions, which one of the well-known division algebras are appropriate for constructing space-time block codes. This paper deals with twisted Laurent series rings and their subrings twisted function fields, to construct STBCs. First, we introduce twisted Laurent series rings over field extensions of $\mathbb{Q}$. Then, we generalize this construction to the case that coefficients come from a division algebra. Finally, we use an algorithm to construct twisted function fields, which are noncrossed product division algebras, and we propose a method for constructing STBC from them.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.