Abstract
This article focuses on the design and analysis of a direct field orientation (DFO) approach based upon a closed-loop loop rotor flux observer. The approach is ideally suited for applications requiring both zero and very high (i.e., several times base) speed operation. Such applications are common in manufacturing automation where both zero speed position control and high traverse rates with controlled position trajectories are required. Examples include robot motion control systems as used for assembly and the more traditional machining center axis control. The quality of the proposed approach is largely based on the unique structure of its flux observer. The observer effectively combines the best accuracy attributes of rotor flux indirect (feedforward) field orientation (IFO) and stator flux DFO. The parameter sensitivity is similar to IFO at low and zero speeds and to stator flux DFO at high speeds. The closed-loop structure of the observer provides a smooth transition between two open-loop rotor flux observers referred to as the current and voltage models in a deterministic manner set by the closed-loop bandwidth (eigenvalues). The proposed DFO approach is analytically evaluated in comparison with both IFO and stator flux DFO. Experimental results verify the viability of this approach. >
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.