Abstract

High-pressure micro-Raman spectroscopic measurements of calcium ferrite-type MgAl2O4 and CaAl2O4 were made using a diamond-anvil cell high-pressure apparatus. The pressure dependence of frequencies of 18 Raman peaks for calcium ferrite-type MgAl2O4 and 26 Raman peaks for calcium ferrite-type CaAl2O4 were determined up to 20 GPa at ambient temperature. The mode Gruneisen parameter for each observed Raman mode was obtained from the pressure dependence of frequencies. Vibrational mode calculations by first principles using density functional theory were also performed for assignment of Raman peaks and for estimating frequencies of Raman inactive modes. From the obtained mode Gruneisen parameters and the results of the vibrational mode calculations, thermal Gruneisen parameters were determined to be 1.50(5) for calcium ferrite-type MgAl2O4 and 1.31(3) for calcium ferrite-type CaAl2O4. These thermal Gruneisen parameters were applied to heat capacity and vibrational entropy calculations using Kieffer model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.