Abstract

The 2022 Menyuan MS6.9 earthquake, which occurred on January 8, is the most destructive earthquake to occur near the Lenglongling (LLL) fault since the 2016 Menyuan MS6.4 earthquake. We relocated the mainshock and aftershocks with phase arrival time observations for three days after the mainshock from the Qinghai Seismic Network using the double-difference method. The total length and width of the aftershock sequence are approximately 32 km and 5 km, respectively, and the aftershocks are mainly concentrated at a depth of 7–12 km. The relocated sequence can be divided into 18 km west and 13 km east segments with a boundary approximately 5 km east of the mainshock, where aftershocks are sparse. The east and west fault structures revealed by aftershock locations differ significantly. The west fault strikes EW and inclines to the south at a 71º–90º angle, whereas the east fault strikes 133º and has a smaller dip angle. Elastic strain accumulates at conjunctions of faults with different slip rates where it is prone to large earthquakes. Based on surface traces of faults, the distribution of relocated earthquake sequence and surface ruptures, the mainshock was determined to have occurred at the conjunction of the Tuolaishan (TLS) fault and LLL fault, and the west and east segments of the aftershock sequence were on the TLS fault and LLL fault, respectively. Aftershocks migrate in the early and late stages of the earthquake sequence. In the first 1.5 h after the mainshock, aftershocks expand westward from the mainshock. In the late stage, seismicity on the northeast side of the east fault is higher than that in other regions. The migration rate of the west segment of the aftershock sequence is approximately 4.5 km/decade and the afterslip may exist in the source region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.