Abstract
Shock waves generated on eight meteorite and two Al targets by 5.4–5.6 J, 20-ns pulsed Nd:glass laser at 1054 nm generated peak pressures from 0.7 to 11 Gpa. The shock-induced particle velocities in the targets versus time was measured interferometrically. The target momentum coupling and mechanical momentum/energy coupling was highest for the Al. Among the meteorites the coupling was greatest for the Fe-Ni, which maintained physical integrity, and lowest for the stony meteorites, all of which disintegrated. Using particle velocity measurements, shock results are interpreted in terms of target fragmentation, inhomogeneity, and microstructural characteristics which are the dominant target parameters effecting energy and momentum coupling. Normalized values for the shocked material velocity and peak pressure in the targets compare favorably to similar experimental work on Al targets. Applications to modeling high-velocity meteoroid impact with planetary atmospheres, space debris remediation, and near-Earth object material interactions are discussed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have