Abstract

We propose using a solitary kinoform-type spiral phase plate structure to generate an array of vortices located in a single beam. Kinoform-type spiral surfaces allow each wavelength component of the phase modulation value to be wrapped back to its 2 pi equivalent for optical vortices of high charge. This allows the surface-relief profiles of high-charge vortices to be microfabricated with the same physical height as spiral phase plates of unity-charged optical vortices. The m-charged optical vortex obtained interacts with the inherent coherent background, which changes the propagation dynamics of the optical vortex and splits the initial m charge into /m/ unity-charged optical vortices within the same beam. Compared to a hologram, a multistart spiral phase plate is more efficient in the use of available spatial frequencies and beam energy and also is computationally less demanding. Furthermore, using microfabrication techniques will allow for greater achievable tolerances in terms of smaller feature sizes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.