Abstract

ABSTRACTPervaperation (PV), as a novel technology, has shown great promise in fresh water production from salty water. However, the low water flux of the present membranes hinders their practical applications. Here, a new type of PV composite membrane, consisting of a selective skin layer fabricated from poly(vinyl alcohol) (PVA) cross-linked by sulfosuccinic acid and a porous support layer using a commercial polyacrylonitrile (PAN) ultrafiltration membrane, was developed for applications in desalination. The separation performance of S-PVA/PAN composite PV membranes with different S-PVA layer thicknesses was tested in detail. The best result showed a water flux of 27.9 kg m−2 h−1 with a salt rejection of 99.8%, which was obtained at a vacuum of 100 Pa and temperature of 70°C when separating a 35,000 ppm NaCl solution. The S-PVA/PAN composite membranes could also be used for the desalination of high-concentration (100,000 ppm) NaCl solutions with a water flux of 11.2 kg m−2 h−1 with a salt rejection of 99.8%. Moreover, a stable desalination performance was obtained for a 120 h operation time. This study shows the possibility of using PV in desalination applications for seawater, brackish water and reverse osmosis concentrate treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call