Abstract

An electrochemical biofilter (EBF) was developed for enhancing the removal of volatile organic compounds (VOCs) through current. The removal efficiency (RE) of toluene exhibited a notable increase of 15% while the biomass growth rate exhibited a corresponding decline of 46% under an optimal current intensity of 50 mA. Meanwhile, the efficacy of the EBF system was markedly enhanced upon the removal of n-hexane, styrene, dichloromethane, and diisobutylene. The results indicated that there was an 11% to 49% increase in RE and a 0% to 64% reduction in biomass growth rates under the influence of the current. The current stimulation inhibited the accumulation of microorganisms, thereby alleviating biofilm clogging. The relative abundance of gram-positive phyla, including Firmicutes and Actinobacteria, increased by 15% and 23%, respectively, while the traditionally dominant genera within the Proteobacteria phylum, such as Rhodococcus and Dokdonella, exhibited a decline. In addition, the presence of hydrogen peroxide, free chlorine, and superoxides in the leachate indicated that the oxidative reaction increased in EBF system. This study provides an attractive pathway for current stimulation to enhance degradation of VOCs and alleviate biofilm clogging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call