Abstract

An ideal photodetector must exhibit a fast and wide tunable spectral response, be highly responsive, have low power consumption, and have a facile fabrication process. In this work, a self-powered photodetector with a graphene electrode and a perovskite photoactive layer is assembled for the first time. The graphene electrode is prepared using a solution transfer process, and the perovskite layer is prepared using a solution coating process, which makes the device low cost. Graphene can form a Schottky junction with TiO2 to efficiently separate/transport photogenerated excitons at the graphene/perovskite interface. Unlike the conventional photovoltaic structure, in this photodetector, both photogenerated electrons and holes are transported along the same direction to graphene, and electrons tunneled into TiO2 are collected by the cathode and holes transported by graphene are collected by the anode; therefore, the photodetector is self-powered. The photodetector has a broad range of detection, from 260 to 900 nm, an ultrahigh on-off ratio of 4 × 106, rapid response to light on-off (<5 ms), and a high level of detection of ∼1011 Jones. The high performance is primarily due to the unique charge-transport property of graphene and strong light absorption properties of perovskite. This work suggests a new method for the production of self-powered photodetectors with high performance and low power consumption on a large scale.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call