Abstract
Hierarchical nitrogen-doped carbon nanocages (hNCNC) with large specific surface areas were used as a catalyst support to immobilize Pt nanoparticles by a microwave-assisted polyol method. The Pt/hNCNC catalyst with 20 wt% loading has a homogeneous dispersion of Pt nanoparticles with the average size of 3.3 nm, which is smaller than 4.3 and 4.9 nm for the control catalysts with the same loading supported on hierarchical carbon nanocages (hCNC) and commercial Vulcan XC-72, respectively. Accordingly, Pt/hNCNC has a larger electrochemical surface area than Pt/hCNC and Pt/XC-72. The Pt/hNCNC catalyst exhibited excellent electrocatalytic activity and stability for methanol oxidation, which was better than the control catalysts. This was attributed to the enhanced interaction between Pt and hNCNC due to nitrogen participation in the anchoring function. By making use of the unique advantages of the hNCNC support, a heavy Pt loading up to 60 wt% was prepared without serious agglomeration, which gave a high peak-current density per unit mass of catalyst of 95.6 mA/mg for achieving a high power density. These results showed the potential of the Pt/hNCNC catalyst for methanol oxidation and of the new hNCNC support for wide applications.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have