Abstract

Capacitors are indispensable components of electronic circuits. Filter capacitors, mainly dominated by electrolytic capacitors, are critical for the accurate power supply of integrated circuits for central processors and storage devices, affecting the performance of advanced and sophisticated electronic equipment. However, electrolytic capacitors are restricted in working temperatures (<150°C) and humidity conditions due to the inherent characteristics of MnO2 or polymer cathodes that tend to deteriorate at high temperatures and moisture. Here, high temperature resistant and conductivity SnO2 cathode and MIM-like (SnO2/AAO/Al) structures are introduced into aluminum electrolytic capacitors via ALD technology. First achieved in a higher temperature window (-60°C∼330°C), the capacitor maintains a stable capacity (114.5±3.6 μF/cm2) and phase angles (-89.5±0.2°) at 120 Hz. The tight stacking and conformability of ALD even allows unencapsulated devices to exhibit durable waterproof, showing stable performance for immersion in water within 90 days. Moreover, a thin amorphous Al2O3 (A) as buffer layer is introduced at electrode/dielectric interface, aiming to barrier the interfacial atomic diffusion at the SnO2/AAO. A stable vdW SnO2/A/AAO interfaces is obtained, proven by MD and DFT calculations. Impressively, the capacitor exhibits high reliability with high breakdown field strength (5.5 MV/cm), low leakage current (7.2 × 10-7 A/cm2 at 1 V) and low loss (2% at 120 Hz). Applied in circuits, the capacitor filters 100 kHz signal with a Vripple of only 15 mV and shows excellent charging and discharging behaviors. The work may pave the way for the practical application of electrolytic capacitors in harsh working environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call