Abstract

Emerging hybrid organic–inorganic perovskites with superior optoelectronic property demonstrate promising prospect for photovoltaic (PV) applications, in particular for low-lighting indoor applications e.g. within internet of things (IoT) networks or low-energy wireless communication devices. In order to prepare devices with high power output under low-illumination conditions, scalable fabrication techniques are preferred for large-area perovskite solar cells. In additions, one of the key parameters to achieve high-efficiency large-area perovskite solar cells is to minimize the ohmic loss to further boost the solar cell efficiency. Herein, a one-step blade-coating method assisted by hexafluorobenzene (HFB) was developed to deposit dense, large-area smooth and high-quality perovskite films with low ohmic loss. The as-fabricated devices demonstrated power conversion efficiency (PCE) of 20.7% (area of 0.2 cm2) and 16.5% (1 cm2), respectively, under standard (AM 1.5G) illumination conditions. Besides, the large-area (1 cm2) devices demonstrated a remarkable PCE of ∼ 33.8% and ∼ 30.0% under 1000 lx and 100 lx illumination provided by white light-emitting diode (LED) lamp, respectively. We exhibited a series-connected stack of large-area (totally active area ∼ 4 cm2) perovskite photovoltaic device powering up a LED under common indoor environment as an indoor self-power indicator lamp. The analysis using a single diode model suggests that the high performance of the large-area devices under low-lighting indoor conditions is highly associated with the largely reduced ohmic losses, which particularly indicate that the perovskite films by a facile and scalable blade-coating method. The presented scalable approach paves the way to designing high-performance perovskite solar cells for a variety of emerging indoor PV applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call