Abstract
This study investigates the effect of oxygen plasma (PO) on the crystalline structure of tellurium (Te) thin films during reactive sputtering. Introduction of oxygen radicals suppresses uncontrolled rapid growth of hexagonal Te crystals, amorphizing the deposited Te thin film. This amorphous phase changes to the hexagonal phase upon alumina encapsulation. A 4-nm-thick Te transistor with a PO of 7% exhibits outstanding device performances, with a field-effect mobility up to 40.8 cm2V−1s−1 and an on/off current modulation ratio up to <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$1.1\times 10^{{6}}$ </tex-math></inline-formula> . These behaviors originate from alleviated random polycrystallinity in the corresponding thin film. However, when PO increases above 7%, amorphization progresses further, and remnant oxygen ions hamper the growth of the hexagonal phase in Te thin film. Consequently, hole transport is degraded. This study suggests tellurium oxide as a crystallization retarder for high-performance p-channel Te transistors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.