Abstract

Bismuth (Bi) and tellurium (Te) thin films were formed by galvanic displacement of different sacrificial iron group thin films [i.e. nickel (Ni), cobalt (Co) and iron (Fe)] where the formation was systematically investigated by monitoring the change of open circuit potential (OCP), surface morphology and microstructure. The surface morphologies and crystal structures of galvanically displaced Bi or Te thin films strongly depended on the type and thickness of the sacrificial materials. Continuous Bi thin films were successfully deposited with the sacrificial Co. However, dendrites and nanoplatelets were formed from the Ni and Fe thin films. Te thin films were synthesized with all the three sacrificial thin films. Chemical dissolution rate of the sacrificial thin films and mixed potential strongly influenced formation of Bi or Te thin films.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.