Abstract

In search of affordable, flexible, lightweight, efficient and stable supercapacitors, metal oxides have been shown to provide high charge storage capacity but with poor cyclic stability due to structural damage occurring during the redox process. Here, we develop an efficient flexible supercapacitor obtained by carbonizing abundantly available and recyclable jute. The active material was synthesized from jute by a facile hydrothermal method and its electrochemical performance was further enhanced by chemical activation. Specific capacitance of 408 F/g at 1 mV/s using CV and 185 F/g at 500 mA/g using charge-discharge measurements with excellent flexibility (~100% retention in charge storage capacity on bending) were observed. The cyclic stability test confirmed no loss in the charge storage capacity of the electrode even after 5,000 charge-discharge measurements. In addition, a supercapacitor device fabricated using this carbonized jute showed promising specific capacitance of about 51 F/g, and improvement of over 60% in the charge storage capacity on increasing temperature from 5 to 75 °C. Based on these results, we propose that recycled jute should be considered for fabrication of high-performance flexible energy storage devices at extremely low cost.

Highlights

  • Material Bamboo Bamboo Firwood Cassava peel waste Recycled waste paper Cherry stones Corn grains Pistachio shell pitch Sunflower seed shell Potato starch Arganseed shells

  • It can be seen that the intensity of G band (IG) is higher than D band intensity (ID) suggesting good structural alignment

  • It is worth noting that the IG/ID value is in between 0.52 of commercial activated carbons and ordered carbon nanosheets[35], wherein the previously reported ratios go close to 0.90 for similar pyrolysis temperatures[34]

Read more

Summary

Storage Approach

A supercapacitor device fabricated using this carbonized jute showed promising specific capacitance of about 51 F/g, and improvement of over 60% in the charge storage capacity on increasing temperature from 5 to 75 °C. Based on these results, we propose that recycled jute should be considered for fabrication of highperformance flexible energy storage devices at extremely low cost. Supercapacitors are electrochemical energy storage devices primarily attractive for their fast charging and discharging capability, long lasting stability and safe handling[1, 2].

This work
Results and Discussions
Conclusions
Author Contributions
Additional Information
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.