Abstract

The development of wearable thermoelectric generator for human energy harvesting has attracted significant interests in recent years. However, the thermoelectric properties and flexibility of inorganic thermoelectric films still need to be improved. In this study, high-performance flexible Bi2Te3 films with controlled microstructure are prepared on the flexible polyimide substrate by regulating the sputtering pressures, and the power factor can reach 21.7 μW cm−1 K−2. By coating poly (dimethylsiloxane) on the Bi2Te3 surface, the flexibility of the films is improved significantly, so that the change of resistance is kept below 5% after bending 2000 cycles at the radius of 7 mm. Then an in-plane thermoelectric generator containing 13 pairs of thermocouples is fabricated with the open circuit voltage of 48.9 mV and the output power of 693.5 nW at ΔT = 24 K. Meanwhile, the transient open circuit voltage of 12.99 mV is achieved when using the temperature difference between the ambient air and the body, indicating promising application for human energy harvesting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.