Abstract

We demonstrate that an application of a III-V-on-silicon hybrid concept to terahertz (THz) Cherenkov difference frequency generation (DFG) quantum cascade laser (QCL) sources (THz DFG-QCLs) can dramatically improve THz output power and mid-infrared-to-THz conversion efficiency. Completely processed THz DFG-QCLs grown on a InP substrate are transfer-printed onto a 1-mm-thick high-resistive Si substrate using a 100-nm-thick SU-8 as an adhesive layer. Room temperature device performance of the reference InP and hybrid Si THz DFG-QCLs of the same ridge width (22 µm) and cavity length (4.2 mm) have been experimentally compared. The target THz frequency of 3.5 THz is selected for both devices using the dual-period first order surface gratings to select the mid-infrared pump wavelength of 994 cm-1 and 1110 cm-1. At the maximum bias current, the reference InP and hybrid Si devices produced THz power of 50 µW and 270 µW, respectively. The mid-infrared-to-THz conversion efficiency corresponds to 60 µW/W2 and 480 µW/W2, respectively, resulting in 5 times higher THz power and 8 times higher conversion efficiency from the best-performing hybrid devices. A hybrid Si device integrated in a Littrow external-cavity setup showed wavelength tuning in the 1-6 THz range without THz beam steering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.