Abstract
The transition towards net-zero emissions is inevitable for humanity’s future. Of all the sectors, electrical energy systems emit the most emissions. This urgently requires the witnessed accelerating technological landscape to transition towards an emission-free smart grid. It involves massive integration of intermittent wind and solar-powered resources into future power grids. Additionally, new paradigms such as large-scale integration of distributed resources into the grid, proliferation of Internet of Things (IoT) technologies, and electrification of different sectors are envisioned as essential enablers for a net-zero future. However, these changes will lead to unprecedented size, complexity and data of the planning and operation problems of future grids. It is thus important to discuss and consider High Performance Computing (HPC), parallel computing, and cloud computing prospects in any future electrical energy studies. This article recounts the dawn of parallel computation in power system studies, providing a thorough history and paradigm background for the reader, leading to the most impactful recent contributions. The reviews are split into Central Processing Unit (CPU) based, Graphical Processing Unit (GPU) based, and Cloud-based studies and smart grid applications. The state-of-the-art is also discussed, highlighting the issue of standardization and the future of the field. The reviewed papers are predominantly focused on classical imperishable electrical system problems. This indicates the need for further research on parallel and HPC approaches applied to future smarter grid challenges, particularly to the integration of renewable energy into the smart grid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.