7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1109/tec.2016.2633302
Copy DOIPublication Date: Jun 1, 2017 | |
Citations: 95 |
In this paper, a high-performance torque control scheme of an interior permanent magnet synchronous machine (IPMSM) is introduced, which focuses on both steady state and transient torque dynamics of the IPMSM under the maximum torque per ampere (MTPA) condition. For the proposed control scheme with model-based torque correction, an accurate and efficient torque control with robust torque response can be achieved for the MPTA operation. Global stability and performance of the proposed torque control scheme are theoretically guaranteed. The current limitation of the IPMSM is easily handled without anti-windup and without degrading the torque dynamics or stability even the torque demand is beyond the maximum reachable torque. Implementation issues of the proposed control scheme to the real IPMSM plant with parameter variation are discussed. With the compensation of the linear and nonlinear inverter voltage drop, a robust and accurate torque response for the real-time MTPA operation can be achieved by an adaptive current control and online parameter estimation. The simulation and experimental results validate the safety and high performance of the proposed torque control scheme.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.