Abstract

SUMMARYThree Galerkin methods—continuous Galerkin, Compact Discontinuous Galerkin, and hybridizable discontinuous Galerkin—are compared in terms of performance and computational efficiency in 2‐D scattering problems for low and high‐order polynomial approximations. The total number of DOFs and the total runtime are used for this correlation as well as the corresponding precision. The comparison is carried out through various numerical examples. The superior performance of high‐order elements is shown. At the same time, similar capabilities are shown for continuous Galerkin and hybridizable discontinuous Galerkin, when high‐order elements are adopted, both of them clearly outperforming compact discontinuous Galerkin. Copyright © 2013 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.