Abstract
A coupling strategy between hybridizable discontinuous Galerkin (HDG) and continuous Galerkin (CG) methods is proposed in the framework of second-order elliptic operators. The coupled formulation is implemented and its convergence properties are established numerically by using manufactured solutions. Afterwards, the solution of the coupled Navier–Stokes/convection–diffusion problem, using Boussinesq approximation, is formulated within the HDG framework and analysed using numerical experiments. Results of Rayleigh–Benard convection flow are also presented and validated with literature data. Finally, the proposed coupled formulation between HDG and CG for heat equation is combined with the coupled Navier–Stokes/convection diffusion equations to formulate a new CG–HDG model for solving conjugate heat transfer problems. Benchmark examples are solved using the proposed model and validated with literature values. The proposed CG–HDG model is also compared with a CG–CG model, where all the equations are discretized using the CG method, and it is concluded that CG–HDG model can have a superior computational efficiency when compared to CG–CG model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.