Abstract

In this paper, we present a numerical approach for predicting fluid flows in solid rocket motor (SRM) chambers. We use a novel high-order technique to track the burning grain surface. Spectral convergence toward the exact burning surface is achieved thanks to Fourier differentiation. In addition, we make use of a body-fitted mesh deforming with the burning surface and present a method to avoid manual remeshing. We describe several methods to deform the volume mesh and to keep good mesh element quality during the computation. We then couple the surface and volume approaches. The resulting coupled method is able to handle the formation of geometric singularities on the burning surface while keeping constant surface and volume mesh topology. This geometrical approach is integrated into a complex code for compressible, multi-species, turbulent flow simulations. Applications to the simulation of the internal flow in realistic solid rocket motors with complex grain geometry are then presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.