Abstract

In this paper, we present a novel numerical approach for predicting the fluid flow in a solid rocket motor chamber with burning propellant grain. We use a high-order technique to track the regressing grain surface. Spectral convergence toward the exact burning surface is achieved thanks to Fourier differentiation. For the computation of the internal chamber fluid flow, we make use of a body-fitted volume mesh deforming with the grain surface. We describe several methods to deform the volume mesh and to keep good mesh element quality without global remeshing. We then couple the surface and volume approaches and integrate them into a complex code for compressible, multispecies, turbulent flow simulations. Thanks to these methods, we are able to exhibit one of the first three-dimensional simulations of the internal flow in a realistic solid rocket motor coupled to complex grain surface regression. In prior work, burning grain surface methods have only been coupled with one-dimensional internal ballistics solvers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call