Abstract

This paper develops the high-order accurate entropy stable finite difference schemes for one- and two-dimensional special relativistic hydrodynamic equations. The schemes are built on the entropy conservative flux and the weighted essentially non-oscillatory (WENO) technique as well as explicit Runge-Kutta time discretization. The key is to technically construct the affordable entropy conservative flux of the semi-discrete second-order accurate entropy conservative schemes satisfying the semi-discrete entropy equality for the found convex entropy pair. As soon as the entropy conservative flux is derived, the dissipation term can be added to give the semi-discrete entropy stable schemes satisfying the semi-discrete entropy inequality with the given convex entropy function. The WENO reconstruction for the scaled entropy variables and the high-order explicit Runge-Kutta time discretization are implemented to obtain the fully-discrete high-order schemes. Several numerical tests are conducted to validate the accuracy and the ability to capture discontinuities of our entropy stable schemes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call