Abstract
Flame retardant rigid polyurethane foam (RPUF) with a reactive melamine-derived polyol (MADP) and 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) were fabricated through free-rise technique. The thermal stability and fire behaviors of RPUF were investigated by thermogravimetric analysis (TGA), limiting oxygen index (LOI), and cone calorimeter. In comparison with the results of RPUF and RPUF/MADP, RPUF/MADP-DOPO displayed higher compressive strength, owing to the two stiff phenyl groups of DOPO. Moreover, with only 7.5 wt % MADP and 7.5 wt % DOPO loading, the MADP/DOPO system endowed RPUF with enhanced char formation, increased LOI value of 28.5% and reduced heat release. Scanning electron microscope (SEM) images, X-ray photoelectron spectroscopy (XPS) analysis and Raman spectra of the char residues suggested that the formation of compact, continuous char layer. The thermal degradation was characterized using thermogravimetric analysis/infrared spectrometry (TG-IR) and chemical structure changes during the thermal degradation were monitored by real time Fourier transform infrared (RT-FTIR), these results demonstrated that the partial phosphorus from DOPO remained in the residual char, but the introduction of MADP significantly promoted generating more stable aromatic structure and enhanced the strength of the char layer formed. Furthermore, MADP facilitated the formation of more H2O and CO2 and diluted the flammable gases in gaseous phase. Based on the analysis, the introduction of MADP/DOPO can endowed excellent flame retardancy to RPUF depending on bi-phase flame-retardant mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.