Abstract

Triboelectric polymers have attracted extensive attention due to their great electron-accepting and electron-donating properties in contact electrification as well as their flexible and low-cost merits and have become promising electrode materials in triboelectric nanogenerators (TENGs). However, most research has exclusively focused on improving the electron capture capability of the triboelectric layer, neglecting to enhance the electron-donating capability, which leads to a low output performance of TENG and limits its practical application. In this study, we developed a method to fabricate highly tribo-positive Nylon-11 film through roll-to-roll processing. Paired with the poly(tetrafluoroethylene) triboelectric layer, the transferred charge density of contact-separation TENG based on Nylon-11 film prepared by this method reaches 291.1 μC/m2, which has been improved by 12.4% compared with the conventional compression molding sample. The novel fabricating method can regulate the surface functional groups to achieve higher surface potential and obtain a favorable pseudohexagonal crystal phase, leading to an increasing transferred charge density in triboelectrification. Additionally, it has been analyzed that higher chemical potential of materials can facilitate the transfer of electrons from the triboelectric polymer surface. This study provides a nonadditive, simple, and effective strategy to fabricate excellent tribo-positive material, which can significantly enhance the performance of TENG.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.